687 research outputs found

    SEGURIDAD ENERGÉTICA Y COOPERACIÓN INTERNACIONAL DE CHINA

    Get PDF
    The energy situation constitutes an essential component in the progress of countries. Achieving a supply that meets normal survival and development needs is a permanent concern, aggravated by the current conditions of the international context and the effects of climate change. The article aims to analyze the current and future situation of energy security in China, achieving as a result of the search and processing of information related to the subject, evaluate the current situation of Chinese energy resources, supply, transportation, prices and the development of innovation. It also addresses international cooperation, current and future challenges, as well as measures that will ensure that this strategic objective is achieved.La situación energética constituye un componente esencial en el progreso de los países. Lograr un suministro que satisfaga las necesidades normales de supervivencia y desarrollo constituye una preocupación permanente, agravada por las condiciones actuales del contexto internacional y los efectos del cambio climático. El artículo tiene como objetivo analizar la situación actual y futura de la seguridad energética en China, logrando como resultado de la búsqueda y procesamiento de la información relacionada con el tema, evaluar la situación actual de los recursos energéticos chinos, el suministro, la transportación, los precios y el desarrollo de la innovación. También aborda la cooperación internacional, los desafíos actuales y futuros, así como las medidas que garantizarán lograr este objetivo estratégico

    STM probe on the surface electronic states of spin-orbit coupled materials

    Get PDF
    Thesis advisor: Vidya MadhavanSpin-orbit coupling (SOC) is the interaction of an electron's intrinsic angular momentum (spin) with its orbital momentum. The strength of this interaction is proportional to Z4 where Z is the atomic number, so generally it is stronger in atoms with higher atomic number, such as bismuth (Z=83) and iridium (Z=77). In materials composed of such heavy elements, the prominent SOC can be sufficient to modify the band structure of the system and lead to distinct phase of matter. In recent years, SOC has been demonstrated to play a critical role in determining the unusual properties of a variety of compounds. SOC associated materials with exotic electronic states have also provided a fertile platform for studying emergent phenomena as well as new physics. As a consequence, the research on these interesting materials with any insight into understanding the microscopic origin of their unique properties and complex phases is of great importance. In this context, we implement scanning tunneling microscopy (STM) and spectroscopy (STS) to explore the surface states (SS) of the two major categories of SOC involved materials, Bi-based topological insulators (TI) and Ir-based transition metal oxides (TMO). As a powerful tool in surface science which has achieved great success in wide variety of material fields, STM/STS is ideal to study the local density of states of the subject material with nanometer length scales and is able to offer detailed information about the surface electronic structure. In the first part of this thesis, we report on the electronic band structures of three-dimensional TIs Bi2Te3 and Bi2Se3. Topological insulators are distinct quantum states of matter that have been intensely studied nowadays. Although they behave like ordinary insulators in showing fully gapped bulk bands, they host a topologically protected surface state consisting of two-dimensional massless Dirac fermions which exhibits metallic behavior. Indeed, this unique gapless surface state is a manifestation of the non-trivial topology of the bulk bands, which is recognized to own its existence to the strong SOC. In chapter 3, we utilize quasiparticle interference (QPI) approach to track the Dirac surface states on Bi2Te3 up to ~800 meV above the Dirac point. We discover a novel interference pattern at high energies, which probably originates from the impurity-induced spin-orbit scattering in this system that has not been experimentally detected to date. In chapter 4, we discuss the topological SS evolution in (Bi1-xInx)2Se3 series, by applying Landau quantization approach to extract the band dispersions on the surface for samples with different indium content. We propose that a topological phase transition may occur in this system when x reaches around 5%, with the experimental signature indicating a possible formation of gapped Dirac cone for the surface state at this doping. In the second part of this thesis, we focus on investigating the electronic structure of the bilayer strontium iridate Sr3Ir2O7. The correlated iridate compounds belong to another domain of SOC materials, where the electronic interaction is involved as well. Specifically, the unexpected Mott insulating state in 5d-TMO Sr2IrO4 and Sr3Ir2O7 has been suggested originate from the cooperative interplay between the electronic correlations with the comparable SOC, and the latter is even considered as the driving force for the extraordinary ground state in these materials. In chapter 6, we carried out a comprehensive examination of the electronic phase transition from insulating to metallic in Sr3Ir2O7 induced by chemical doping. We observe the subatomic feature close to the insulator-to-metal transition in response with doping different carriers, and provide detailed studies about the local effect of dopants at particular sites on the electronic properties of the system. Additionally, the basic experimental techniques are briefly described in chapter 1, and some background information of the subject materials are reviewed in chapter 2 and chapter 5, respectively.Thesis (PhD) — Boston College, 2014.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Physics

    Multimedia Fusion for Public Security in Heterogeneous Sensor Networks

    Get PDF
    Public security is a widespread disastrous phenomenon that constitutes a grave threat. Although information fusion of video sensor networks for public security has been studied extensively, multimedia fusion in heterogeneous sensor networks or its application in public security remains a challenge and central goal in the field of information fusion. In this study, to realize the detection, monitoring, and intelligent alarm of such hazards, we develop a graph-based real-time schema for studying the dynamic structure of heterogeneous sensors for public security. In the proposed schema, data fusion algorithms based on data-driven aspects of fusion are explored to locate the optimal sensing ranges of sensor nodes in a network with heterogeneous targets. In addition, we propose a framework incorporating useful contextual and temporal cues for public security alarm, explore its conceptualizations, benefits, and challenges, and analyze the correlations of the target motion elements in the multimedia sensor stream. The experimental results show that the new method offers a better way of intelligent alarm that cannot be achieved by existing schemes

    STM probe on the surface electronic states of spin-orbit coupled materials

    Get PDF
    Thesis advisor: Vidya MadhavanSpin-orbit coupling (SOC) is the interaction of an electron's intrinsic angular momentum (spin) with its orbital momentum. The strength of this interaction is proportional to Z4 where Z is the atomic number, so generally it is stronger in atoms with higher atomic number, such as bismuth (Z=83) and iridium (Z=77). In materials composed of such heavy elements, the prominent SOC can be sufficient to modify the band structure of the system and lead to distinct phase of matter. In recent years, SOC has been demonstrated to play a critical role in determining the unusual properties of a variety of compounds. SOC associated materials with exotic electronic states have also provided a fertile platform for studying emergent phenomena as well as new physics. As a consequence, the research on these interesting materials with any insight into understanding the microscopic origin of their unique properties and complex phases is of great importance. In this context, we implement scanning tunneling microscopy (STM) and spectroscopy (STS) to explore the surface states (SS) of the two major categories of SOC involved materials, Bi-based topological insulators (TI) and Ir-based transition metal oxides (TMO). As a powerful tool in surface science which has achieved great success in wide variety of material fields, STM/STS is ideal to study the local density of states of the subject material with nanometer length scales and is able to offer detailed information about the surface electronic structure. In the first part of this thesis, we report on the electronic band structures of three-dimensional TIs Bi2Te3 and Bi2Se3. Topological insulators are distinct quantum states of matter that have been intensely studied nowadays. Although they behave like ordinary insulators in showing fully gapped bulk bands, they host a topologically protected surface state consisting of two-dimensional massless Dirac fermions which exhibits metallic behavior. Indeed, this unique gapless surface state is a manifestation of the non-trivial topology of the bulk bands, which is recognized to own its existence to the strong SOC. In chapter 3, we utilize quasiparticle interference (QPI) approach to track the Dirac surface states on Bi2Te3 up to ~800 meV above the Dirac point. We discover a novel interference pattern at high energies, which probably originates from the impurity-induced spin-orbit scattering in this system that has not been experimentally detected to date. In chapter 4, we discuss the topological SS evolution in (Bi1-xInx)2Se3 series, by applying Landau quantization approach to extract the band dispersions on the surface for samples with different indium content. We propose that a topological phase transition may occur in this system when x reaches around 5%, with the experimental signature indicating a possible formation of gapped Dirac cone for the surface state at this doping. In the second part of this thesis, we focus on investigating the electronic structure of the bilayer strontium iridate Sr3Ir2O7. The correlated iridate compounds belong to another domain of SOC materials, where the electronic interaction is involved as well. Specifically, the unexpected Mott insulating state in 5d-TMO Sr2IrO4 and Sr3Ir2O7 has been suggested originate from the cooperative interplay between the electronic correlations with the comparable SOC, and the latter is even considered as the driving force for the extraordinary ground state in these materials. In chapter 6, we carried out a comprehensive examination of the electronic phase transition from insulating to metallic in Sr3Ir2O7 induced by chemical doping. We observe the subatomic feature close to the insulator-to-metal transition in response with doping different carriers, and provide detailed studies about the local effect of dopants at particular sites on the electronic properties of the system. Additionally, the basic experimental techniques are briefly described in chapter 1, and some background information of the subject materials are reviewed in chapter 2 and chapter 5, respectively.Thesis (PhD) — Boston College, 2014.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Physics

    Study on solute transport through RO/NF membranes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning

    Full text link
    We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepONet). Specifically, we incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data belonging to the region where training data is located, and utilize a Gaussian decoder to predict means and variances of outputs conditional on representation variables. Furthermore, we propose a data augmentation based information bottleneck objective which can enhance the quantification quality of the extrapolation uncertainty, and the encoder and decoder can be both trained by minimizing a tractable variational bound of the objective. In comparison to uncertainty quantification (UQ) methods for scientific learning tasks that rely on Bayesian neural networks with Hamiltonian Monte Carlo posterior estimators, the model we propose is computationally efficient, particularly when dealing with large-scale data sets. The effectiveness of the IB-UQ model has been demonstrated through several representative examples, such as regression for discontinuous functions, real-world data set regression, learning nonlinear operators for partial differential equations, and a large-scale climate model. The experimental results indicate that the IB-UQ model can handle noisy data, generate robust predictions, and provide confident uncertainty evaluation for out-of-distribution data.Comment: 27 pages, 22figure
    corecore